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ABSTRACT
This paper focuses on solvingDocument Information Extraction (DIE)
in the wild problem, which is rarely explored before. In contrast
to existing studies mainly tailored for document cases in known
templates with predefined layouts and keys under the ideal input
without OCR errors involved, we aim to build up a more practical
DIE paradigm for real-world scenarios where input document im-
ages may contain unknown layouts and keys in the scenes of the
problematic OCR results. To achieve this goal, we propose a novel ar-
chitecture, termed Query-driven Generative Network (QGN), which
is equipped with two consecutive modules, i.e., Layout Context-
aware Module (LCM) and Structured Generation Module (SGM).
Given a document image with unseen layouts and fields, the for-
mer LCM yields the value prefix candidates serving as the query
prompts for the SGM to generate the final key-value pairs even
with OCR noise. To further investigate the potential of our method,
we create a new large-scale dataset, named LArge-scale STructured
Documents (LastDoc4000), containing 4,000 documents with 1,511
layouts and 3,500 different keys. In experiments, we demonstrate
that our QGN consistently achieves the best F1-score on the new
LastDoc4000 dataset by at most 30.32% absolute improvement. A
more comprehensive experimental analysis and experiments on
other public benchmarks also verify the effectiveness and robust-
ness of our proposed method for the wild DIE task.
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1 INTRODUCTION
Document Information Extraction (DIE) aims to parse structured
form consisting of key-value pairs from document images with text
in the semi-structured form [1], which has become an increasingly
important task in the multimedia community and plays an essential
role in many downstream applications, such as business document
information registration [21], verification[4, 10] and retrieval.

For the DIE application scenes, as shown in Fig. 1, we summarize
them into the following three types with the order of increasing
difficulty: 1) Fixed keys and layouts without OCR noise. Taking
the receipt case for example, the keys to be extracted are usually
“Date” and “Total”, while the receipts from different vendors could
have different but relatively fixed key-value layouts. 2) Unknown
keys and layouts without OCR noise. The key and layout are
all agnostic to the model, which aims to verify the generalization
ability in the scenario of open information extraction. 3)Unknown
keys and layouts with OCR noise. In addition to unknown keys,
OCR errors are also taken into account, which is the most practical
and intractable scene we mainly investigate in this paper. We define
this problem as DIE in the wild.

To our best knowledge, the most existing DIE methods devote
to seeking solutions for the first two DIE scenes aforementioned,
which can be categorized into four groups: template-based methods,
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Figure 1: Comparison of application scene between existing
methods and our QGN. Existing methods are not excelling
in handling the scenario with practical issues such as un-
seen keys, unseen layouts, and OCR errors simultaneously.
“Seq”, “Link”, “Gen” are short for “sequence annotation-based
methods”, “linking-based methods” and “generative-based
methods” respectively. “✓” and “✗” indicate whether meth-
ods support the application scenario.

sequence annotation-based methods [19, 35, 36, 38], generative-
based methods [3, 23, 34], and linking-based methods [11, 24, 31].
These works perform well in particular scenarios based on the
limited assumption, e.g., fixed layouts, predefined keys and with-
out noisy OCR results. More concretely, the template-based meth-
ods employ a layout matching strategy assuming all documents
in fixed layout and generated with the same template. In a simi-
lar sense, all keys should be predefined and known in advance in
sequence annotation-based and most generative-based methods,
while linking-based methods work on the condition of totally cor-
rect OCR results organized in reading order. However, it is difficult
to obtain the correct reading order in the real-world application
because of the enormous variety of layouts and keys existing in the
real world. Therefore, the DIE in the wild is still a rarely explored
and challenging task.

To solve this practical problem, we propose a novel model fol-
lowing the query-then-generation pipeline, termed Query-driven
Generative Network (QGN), which can adequately combine the
merits of existing linking-based methods and generative-based so-
lutions. Compared with linking-based methods that 1) first predict
classes of manually ordered entities and then 2) link them, QGN
only predicts the value prefixes of entities at the first stage, which
provides simpler but more robust query prompts [9] for guiding
the next generation step without strict reliance on OCR. Given
the query prompts, QGN follows a “divide and conquer” paradigm:
instead of generating all key-value information in one action, local
key-value generations are conducted by referring to each prompt.
The generated local results are aggregated into the final output
afterward, which could alleviate the accumulated errors incurred
by generative-based methods. Consequently, the difficulty of each
sub-task is properly reduced in our proposed QGN, which is able
to achieve surprisingly better performance than existing methods.

Moreover, we also observe that our model can well handle the OCR
errors in more practical scenes.

Additionally, to further explore the potential of our method
under various scenarios of layouts and fields, we establish a new
large-scale dataset, which contains 4,000 documents, 1,511 different
types of layouts, and more than 3,500 various keys, denoted as
LArge-scale STructured Documents dataset (LastDoc4000). Our
main contributions can be summarized as follows:

1) This paper defines a more challenging Document Informa-
tion Extraction (DIE) task, termed DIE in the wild, where
input document images may contain unknown keys and lay-
outs with problematic OCR involved, which has been rarely
explored in previous works.

2) We propose a novel query-based generative architecture,
QGN, tailored for DIE in the wild task. Especially, thanks to
the query-extraction and pair-generation mechanisms, QGN
no longer relies on the faultless OCR results as well as the
limited predefined keys, while required by other methods.

3) Our proposed QGN can not only achieve comparable state-
of-the-art performance on public benchmarks, but also on a
more challenging dataset we newly collected, which demon-
strates the effectiveness of the proposed QGN and further
confirms its applicability under real scenarios.

2 RELATEDWORK
Before deep learning became widespread in DIE, traditional meth-
ods of this task [8, 28] heavily relied on the predefined template
rules, which could not generalize across different document lay-
outs. Recently, significant improvements have been achieved both
in performance and robustness via deep-learning-based methods.
These approaches can be mainly categorized into three groups:
sequence annotation-based methods, generation-based methods,
and linking-based methods.

2.1 Sequence annotation-based methods
These methods aim to classify each document token into prede-
fined categories, similar to the named entity recognition paradigm.
In early, Sage et al. [27] take semantics and layout information
into account and uses recurrent neural networks to extract entities
of interest. Recently, considerable progress has been achieved by
multimodal-based models [17–19, 35–37] which encode visual, se-
mantic, and layout modalities into the Bert-based [6] model. How-
ever, content serialization is still a heavy dependency for these
methods, indicating that all texts should be prepared in correct
reading order first, which is practically difficult due to layouts’
diversity in the real world.

2.2 Generative-based methods
In order to efficiently employ weak supervision with document-
level annotations instead of costly word-level annotations, Powalski
et al. [23] utilize a T5 [25] based encoder-decoder Transformer [32]
for end-to-end DIE training, and Sage et al. [26] adopt a PGN-
based [29] decoder separately. Moreover, Wang et al. [34] train a
flexible decoder with the generation and tagging objectives simul-
taneously optimized. These generative-based methods comply with
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Figure 2: The architecture of our proposed method. LCM-based backbones in the extraction and generation stage are designed
in the same structure with parameters sharing. “Type” is a flag embedding to distinguish the two stages, semantic embeddings
with “##” indicate the word-piece inputs. 𝑃𝑖 , 𝑄𝑖 , and 𝐴𝑖 respectively represent prefix of values, corresponding queries, and
generated results. Best viewed in color.

the seq2seq pattern, which can deal with some OCR misrecogni-
tion. However, they still have an implicational dependency on the
correct sequential order through 1D position embedding and could
not cover unseen keys due to limited and predefined categories.

2.3 Linking-based methods
These methods mainly focus on scenes of unlimited keys, includ-
ing the graph-based method and key-value linking method. For
the former, MatchVIE [31], SPADE [13] and BROS [11] propose a
graph-based decoder to extract key contexts from identified con-
nectivity between text blocks. For the others [36], a key-value en-
tity recognition model along with the classification-based relation
extraction is employed for the multilingual DIE task. Note that,
part of the multimodal pre-training models mentioned in the se-
quence annotation-based methods can also be applied to this kind
of method due to the model architecture is similar as LayoutLM.
These methods perform well on undefined keys of idealized scenes
but could be seriously influenced by the OCR errors.

3 METHOD
3.1 Overall Architecture
The overview of the proposedQuery-drivenGenerative Network (QGN)
is shown in Fig. 2, which consists of 1) Prefix Query Extraction
(Section 3.3), 2) Structural Generation Module (SGM, Section 3.4),
equipped with 3) Layout Context-aware Module (LCM, Section 3.2).
Firstly, multi-modality embeddings, namely vision, text, position
and type embeddings are extracted similarly with LayoutLM [35].
Afterward, the specific query prefix of each value entity is picked
up using the windowmechanism, based on which the query vectors
are aggregated with context-sensitive modalities. Furthermore, key-
value pairs are generated word-by-word at the generation stage,
with each query vector acting as the prompt. Note that a generate-
with-copy mechanism is employed to decide whether to generate
new words or copy existing ones from source texts.

3.2 Layout Context-aware Module
LCM takes multi-modality embeddings of each token as input and
outputs the corresponding representations with fixed dimensions,
following the architecture of the Transformer [32]. In previous

Transformer-based works [13, 37], relative position information is
employed to model the local invariance of document layout. How-
ever, there exist two limitations in the relative position bias: 1) the
positional embedding is unable to capture contextual information
in complex scenes (e.g., the key and matched value are seriously
misaligned), and 2) utilizing the inductive bias of all tokens to com-
pute attention matrix may involve noisy tokens and weaken the
local perception, leading to potential degradation of performance.
To address these issues, we propose a new scheme named LCM,
stacked by Layout Context-aware Block (LCB), which can aggre-
gate the 𝑽𝑖𝑠𝑖𝑜𝑛, 𝑺𝑒𝑚𝑎𝑛𝑡𝑖𝑐 and 𝑷𝑜𝑠𝑖𝑡𝑖𝑜𝑛 information together for
better capturing effective contextual layout bias, as shown in Fig. 3.
Concretely, we consider a measurement Rl

ij , which measures vari-
ous relative information 𝑙 ∈ {𝑉 , 𝑆, 𝑃} between 𝑖-th token and 𝑗-th
token:

Rl
ij = Hl

i − Hl
j , (1)

where Hl
i ∈ R

1×𝑑ℎ and Hl
j ∈ R

1×𝑑ℎ denote the feature of 𝑖-th token
and 𝑗-th token, 𝑖, 𝑗 ∈ 𝑁 , 𝑁 is the amount of input tokens, 𝑑ℎ means
the dimension, the substract function is employed to get the feature
differences measured by the Euclidean distance between two tokens.
The attention weights between each key K and query vector Q are
calculated by:

A𝑖 𝑗 = Q⊺
𝑖

K𝑗 +
∑︁
𝑙

(Q⊺
𝑖

(𝑙 ) + B𝑙
𝑖 ) (R𝑙

𝑖 𝑗 ), (2)

where Q𝑖 , Q⊺
𝑖
are the query vector and bias query vector of the 𝑖-th

input token separately. K𝑗 is the key vector of the 𝑗-th input token,
B𝑙
𝑖
is a bias vector.
Instead of involving all the query-bias pairs into the attention

matrix as the inductive bias of layout, we only focus on the similar
tokens for each query and mask the other irrelevant ones. To be
specific, for the 𝑖-th element, we calculate the Euclidean distance
against all other elements and get its 𝑘-nearest neighbors, discard-
ing the rest ones, then the masked matrix M𝑙 is built with the
mask ratio of Δ correspondingly. The extended query-key attention
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product matrix Ā𝑖 𝑗 can be noted:

R̄𝑙𝑖 𝑗 = R𝑙𝑖 𝑗M
𝑙 , (3)

Ā𝑖 𝑗 = Q⊺
𝑖

K𝑗 +
∑︁
𝑙

(Q⊺
𝑖

(𝑙 ) + B𝑙𝑖 ) (R̄
𝑙
𝑖 𝑗 ), (4)

where R̄𝑙
𝑖 𝑗
represents the masked encoding.

3.3 Prefix Query Extraction
In previous works [35–37], entity extraction (i.e., key and value) is
often the first step of token-level sequence tagging. Unfortunately,
the extraction usually suffers from entity boundary ambiguity prob-
lems caused by noisy text recognition and wrong reading order,
which leads to performance degradation.

To attack the problem, we propose a novel Prefix Query Extrac-
tion submodule to relieve the reliance on entity integrity, which
only extracts the entity prefix by combining entity extraction and
window sampling. As shown in Fig. 4, a linear mapping equipped
with fully-connected layers and softmax layer is applied to classify
the hidden state of each token produced by LCM, which determines
whether it is the prefix token of the value or not. Given the 𝑖-th to-
ken’s feature H̄𝑖 ∈ R1×𝑑ℎ , the function of entity prefix classification
can be defined as:

F𝜙
𝑖
= SoftMax(H̄iW𝜙 ), (5)

where F𝜙
𝑖
demonstrates the confidence of classification type, 𝜙 ∈

{𝑉𝑎𝑙𝑢𝑒,𝑂𝑡ℎ𝑒𝑟 }, W𝜙 ∈ R𝑑ℎ×𝑑𝜙 is a trainable projection matrix,
𝑑𝜙 = 2. Then, prefix tokens H̄𝜙 ∈ R�̄�×𝑑ℎ of 𝑉𝑎𝑙𝑢𝑒 serve as queries
with contextual information after classification, where 𝑁 is the
amount of selected queries.

In order to enrich the information of the selected token, a local
window mechanism is adopted to fuse adjacent tokens’ features
together. Here the window is defined as continuous sequential
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Figure 4: The diagram of Prefix Query Extraction module.
The query𝑉𝑎𝑙𝑢𝑒 with light blue color is output by entity pre-
fix classification, which is aggregated with window context
to generate the final query vector H̄Φ. Best viewed in color.

tokens after the prefix query:

H̄Φ = Concat(H̄𝜙 , {H̄𝜙

win })WΦ, (6)

where {H̄𝜙
𝑤𝑖𝑛

} ∈ R�̄�×𝑑h×Λ is the set of adjacent tokens in the
local window, Λ is the window size, WΦ ∈ R(Λ+1)×𝑑ℎ×𝑑ℎ is the
linear projection of window aggregation, H̄Φ ∈ R1×𝑑ℎ denotes
the output states of the query with window features. Compared
with the previous methods relying on entire entity tagging, the
prefix classification scheme is simple yet effective to fully utilize
the contextual layout information.
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3.4 Structural Generation
Given the aggregated queries 𝑉𝑎𝑙𝑢𝑒 , the results of key-value pairs
will be generated word-by-word in the subsequent Structural Gen-
eration process, which is mainly implemented by an LCM decoder
and a copy-and-generative block, as depicted in Fig. 5. For the input,
the query vector H̄Φ is appended to the end of the original sequence
of length 𝑁 , and the position embedding of decoded tokens are
built with the 2D coordinate as the LCB does.

Taking the query H̄Φ as input, the LCM outputs the correspond-
ing contextual state ĤΦ (𝑡) with the hidden size of 𝑑ℎ , where 𝑡 repre-
sents the 𝑡-th timestep of decoding. Furthermore, the copy mecha-
nism is inherited from an effective text summarizationmethod, PGN
[29], to improve the performance. Specifically, for each timestep
𝑡 , a generation probability distribution d𝑔𝑒𝑛𝑤 (𝑡) of each word is
generated by the generator. Meanwhile, another copy probability
distribution d𝑐𝑜𝑝𝑦𝑤 (𝑡) is also generated by the copier which indi-
cates whether the candidate word is in the source text. The final
distribution is calculated as:

d𝑤 (𝑡 ) = (1 − 𝑃𝑐𝑜𝑝𝑦 (𝑡 ) )d𝑔𝑒𝑛𝑤 (𝑡 ) + 𝑃𝑐𝑜𝑝𝑦 (𝑡 )d𝑐𝑜𝑝𝑦𝑤 (𝑡 ), (7)

where 𝑃𝑐𝑜𝑝𝑦 (𝑡) ∈ [0, 1], used as a soft switch to choose a word
between generation or copied from the input sequence. For each
timestep, ĤΦ (𝑡) output by LCM decoder is appended to the se-
quence, which is regarded as a new context vector to guide the
output for the next timestep:

ĤΦ
𝑖𝑛𝑝𝑢𝑡 (𝑡 + 1) = ĤΦ

𝑜𝑢𝑡𝑝𝑢𝑡 (𝑡 ) . (8)

When the field terminator [SEP] is generated, the entire query
process comes to an end, likewise the key-value pair generation. Fi-
nally, the generated results from all queries compose the structured
information result.

3.5 Training Strategy
3.5.1 Design of loss function. The proposed QGN is trained with
the multiple optimization tasks of entity prefix classification and
structured generation in an end-to-end way. The global optimiza-
tion can be defined as:

L = _1
1
𝑁

𝑁∑︁
𝑖=1

L𝑐𝑙𝑎𝑠𝑠 + _2
1
𝑇

𝑇∑︁
𝑡=1

L𝑔𝑒𝑛, (9)

where L𝑐𝑙𝑎𝑠𝑠 and L𝑔𝑒𝑛 represent the cross-entropy loss of entity
prefix classification and information generation loss respectively,
which are combined by weight parameters _1 and _2. 𝑁 is the
amount of input tokens, 𝑇 is the number of timesteps.

3.5.2 Pre-training. To improve the performance of QGN, we use
large-scale data for pre-training. On one hand, we sample 6 mil-
lion English documents from the IIT-CDIP [16] dataset partially
following LayoutXLM [36]. On the other hand, Chinese and English
documents obtained from the web are also employed, consisting
of 37 million metadata after cleaning. Hence, the total amount of
documents for pre-training is about 43 million.

In the pre-training stage, we simultaneously use three self-supervised
tasks derived from UniLM [7], including Unidirectional LM, Bidirec-
tional LM, and Sequence-to-Sequence LM. Specifically, during one
training batch, the bidirectional LM objective occupies 1/3 of the
time, and the sequence-to-sequence LM objective also occupies 1/3
of the time, while both left-to-right and right-to-left LM objectives
occupy 1/6 of the time respectively. The token masking probability
is 15%, among which 80% are replaced by token [MASK], 10% by a
random token, and the rest are unchanged.

3.5.3 Data augmentation. To achieve further robustness in the
wild scenes, we introduce three data augmentation techniques to
the proposed QGN: semantic, spatial, and visual augmentation,
respectively.

Semantic augmentation. In order to simulate OCR recognition
errors and make the structural generation compatible with such
cases, we randomly replace 10% of the input texts with other char-
acters in the vocabulary while keeping the target structured results
unchanged. Note that no digits will be replaced due to the lack of
contextual information.

Spatial augmentation. Considering the high diversity of lay-
outs, we introduce a geometric transformation to enrich the layout
distribution. In detail, slight jittering is employed to dynamically
generate the offset of bounding boxes, with the ratio range in [0,
0.25] of the average box height. Besides, a global scaling is per-
formed on the coordinates of boxes with a random coefficient in
the range [0.65, 1.25].

Visual augmentation. In the wild scenes, the image capturing
device usually suffers from various perspective distortions and illu-
mination problems, which lead to undesirable image flaws. In order
to address this issue, affine transformation and image enhancement
are performed to simulate the visual content variances of input
images.
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Table 1: Comparison of different settings. “Already seen”
and “Unseen” indicate whether the templates have been seen
in the training set, “GT” and “Realistic” indicate using the
ground truth or realistic OCR as input.

Settings Layout and keys OCR Input
Already Seen Unseen GT Realistic

Setup-A ✓ ✓

Setup-B ✓ ✓

Setup-C ✓ ✓

Setup-D ✓ ✓

4 EXPERIMENTS
4.1 Experimental Settings
Existing DIE solutions usually exploit normalized inputs without
OCR errors and unknown keys. In this task, we conduct the follow-
ing experiments 1) Setup-A: using the ground truth as the input,
2) Setup-B: using realistic OCR results as input, 3) Setup-C: based
on Setup-A and with unseen layouts and unseen keys appear, 4)
Setup-D: based on Setup-C, and using realistic OCR results as input,
as shown in Tab. 1. We employ SBDNet [20] with CRNN [30] as
OCR engines for OCR input.

4.2 Implement Details
4.2.1 Pre-training Implementation details. The proposedQGN stack
12 layers of LCB with 8 attention heads, 768 for hidden size. Distinct
from the original Tranformer, the model is partially initialized from
the released LayoutXLM𝐵𝑎𝑠𝑒 with the newly introduced modules
initialized by random weights. Besides, AdamW [15] with 𝛽1 = 0.9,
𝛽2 = 0.999 is used for optimization. The learning rate is 5e− 5, with
linear warm-up over the first 40,000 steps and linear decay, and the
weight decay is 0.01. The maximum length of the input sequence is
512. We train the model with a total batch size of 1, 024 for 5 epochs
by 16 Nvidia Telsa A100 80GB GPU.

4.2.2 Fine-tuning Implementation details. The hyper-parameter of
maximum sequence length is 1536 and the loss weight parameters
_1 = 0.3, _2 = 0.7 for all downstream tasks. During training,
the model is optimized by the Adam with the initial learning rate
of 5e-5, and a linear decay learning rate schedule. Note that all
experiments are conducted under the same environment, in which
the model is first pre-trained with a total batch size of 1,024 for 5
epochs and then fine-tuned with batch size 48 on various datasets
for 100 epochs.

4.3 Comparison with State-of-the-arts
4.3.1 Fine-tuning Datasets. We conduct extensive experiments on
five public datasets of Document Information Extraction (DIE) and
the proposed LastDoc4000 dataset, as summarized in Tab. 2.
SROIE [12] consists of 973 scanned receipts in English, each of
which is annotated with GT text, corresponding bounding boxes,
and entity type (i.e., Company, Address, Date, and Total).
CORD [22] is also a receipt dataset collected from various sources,
including shops, restaurants, etc., which contains 800 images for the
training set, 100 for the validation set, and 100 for the testing set.

Table 2: Statistics of various datasets in our experiments.

Dataset Train+Dev Test Entity
SROIE 626 347 4
CORD 900 100 30
EPHOIE 1183 311 10
FUNSD-R 149 50 -
XFUND-ZH-R 149 50 -
LastDoc4000 2687 1313 3519

Table 3: Comparison results ofDIE on SROIE, CORD, EPHOIE,
FUNSD-R, and XFUND-ZH-R datasets under Setup-A and
Setup-B settings. F1 means F1-score. The subscript “B” stands
for “Base”, “L” stands for “Large”.

SROIE

Method Setup-A Setup-B
F1(%) F1(%)

BERT B [6] 90.99 73.27
UniLMv2 B [2] 94.59 -
LayoutXLM B [36] 94.80 79.40
BERT L [6] 92.00 75.15
UniLMv2 L [2] 94.88 -
LayoutLM L [35] 95.24 79.31
LayoutLMv2 L [37] 97.81 -
BROS [11] 95.48 -
PICK [38] 96.12 -
VIES [33] 96.12 -
TCPN [34] 96.54 91.93
MatchVIE [31] 96.57 -
StrucTexT [19] 96.88 -
QGN ours 97.90 92.27

CORD
BERT B [6] 89.68 61.72
UniLMv2 B [2] 91.98 -
LayoutXLM B [36] 94.84 67.36
BERT L [6] 90.25 64.38
UniLMv2 L [2] 92.05 -
LayoutLM L [35] 94.93 69.36
LayoutLMv2 L [37] 96.01 -
BROS L[11] 97.28 -
QGN ours 96.84 83.03

EPHOIE
LayoutXLM B [36] 97.69 74.69
VIES [33] 95.23 83.81
TCPN [34] 98.06 86.19
MatchVIE [31] 96.87 -
QGN ours 98.49 89.25

FUNSD-R
LayoutXLM B [36] 52.05 30.11
QGN ours 54.82 39.79

XFUND-ZH-R
LayoutXLM B [36] 64.47 48.45
QGN ours 65.45 62.21
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Table 4: F1(%) scores of different DIE methods on the Last-
Doc4000 under various setups. “∗” indicates the results repro-
duced by the official provided code and pre-trained models.

LastDoc4000

Method Setup-A Setup-B Setup-C Setup-D
F1(%) F1(%) F1(%) F1(%)

InfoXLM ∗
B [5] 60.69 38.30 43.00 28.95

LayoutXLM ∗
B [36] 82.84 58.61 64.13 50.92

QGN ours 89.16 83.86 86.55 81.24

The dataset defines 30 entity categories based on GT annotations
of each receipt.
EPHOIE [33] is composed of 1,494 examination paper heads col-
lected from Chinese schools’ examinations, which are annotated
with ten types of entities (i.e., School, Class, Name).
FUNSD [14] contains 199 noisy scanned documents as well as
corresponding annotations. Due to FUNSD only annotate entities
and link relations, we relabel it with key-value pairs formats, termed
FUNSD-R.
XFUND [36] is a multilingual form understanding dataset, same as
FUNSD, we relabel the Chinese subset with key-value pairs formats,
termed XFUND-ZH-R, which containing 199 scanned documents.
LastDoc4000 is a new large-scale structured documents dataset
collected from the wild scenes, which contains 4,000 images with
1,511 layouts and more than 3,500 different keys. Details of the
LastDoc4000 dataset are given in the appendix.

The F1-score is applicated to measure the entity level accuracy of
DIE task, which is calculated with the whole key-value pair strings.

4.3.2 Results on SROIE, CORD, EPHOIE, FUNSD-R and XFUND-
ZH-R datasets. As shown in Tab. 3, our proposed approach achieves
comparable state-of-the-arts on different datasets under both Setup-
A and Setup-B settings, which demonstrates its superior perfor-
mance. Structured results under the setting of Setup-B are visu-
alized in Fig. 6 (a)-(d), which reveals that QGN is robust against
OCR errors and support error correction. For the Setup-A met-
rics, we extract from the corresponding paper, and for Setup-B,
we fine-tuned the corresponding models reference to the official
released code and pre-training models, i.e. Bert[6], LayoutLM[35],
LayoutXLM[36]. Specifically, baseline models are fine-tuned with
the sequence annotation-based mode on the SROIE, CORD, EPHOIE
dataset, and linking-based mode on other datasets.

4.3.3 Results on LastDoc4000 dataset. The results on LastDoc4000
are summarized in Tab. 4. Compared with the strong baseline Lay-
outXLM, our method improves 6.32% and 25.25% under Setup-A
and Setup-B. The gain is similar to other datasets. In Setup-C and
Setup-D, our QGN achieves at least 22.42% improvement over other
methods, as shown in Fig. 6 (e). Compared with “unseen” and “al-
ready seen” results, QGN shows minor performance drops while
baseline models suffer from huge performance degradations, which
indicates that QGN has a great advantage to handle zero-shot sce-
narios, as shown in Fig. 7.

COMPANY: RESTAURANT JIAWEI 
JIAWEI HOUSE
MENU_NM: 13, JLN TASIK UTAMA 8 
MEDAN NIAGA DAMAI SG BESI
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MEDAN NIAGA DAMAI SG BESI 57000 KL

科目: 语文
学校: 滕川一中

科目: 语文
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年级: 高二

MENU_NM: (TA)KWETIAW SEAFOOD
MENU_NM: SIRAMMENU_CNT: 1
MENU_PRICE: 42,274
TOTAL_QTY: 8
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Noisy OCR input Results of LayoutXLM Results of our QGN
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Figure 6: Visualization results of LayoutXLMandQGNon var-
ious benchmarks under setup-B. Key entities are highlighted
in green, while value entities are in yellow. The images in
rows of a), b), c), d) and e) are samples from SROIE, CORD,
EPHOIE, XFUND-ZH-R, LastDoc4000, respectively. The sec-
ond column presents the results of LayoutXLM, with the
error ones highlighted in red. By contrast, our QGN is able
to yield the correct results given in the third column, which
are marked in green color. Our QGN shows better robustness
in the noisy scenes compared with LayoutXLM.

GT Input Results of LayoutXLM Results of our QGN

CODE: 6109101000
INV NO.: INV4605852
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c) Name: SHAKLEE PRODUCTS(M) 
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Merchant Name: SHAKLEE 
PRODUCTS(M) SB
Amount: MYR 240.75

Figure 7: Visualization results of LayoutXLM and QGN on
the LastDoc4000 dataset under setup-C.

4.4 Ablation Study and Further Discussion
To analyze the effectiveness of different submodules in our designed
network, we perform the following extensive experiments on the
LastDoc4000 dataset under Setup-D. Effect of augmentation strategy
is given in the appendix.

4.4.1 Effect of LCM. We validate the effectiveness of proposed en-
codings in LCM. The results are summarized in Tab. 5, from which
we can see that the position encoding increases F1-score by 1.70%.
Moreover, additional vision and semantic encoding contribute 1.15%
and 2.38% gain, separately. To explore the effectiveness of layout
encodings, we also visualize the attention maps from the first layer
of LCM shown in Fig. 8. The attention weights of position tend to be
local, indicating that the relative positional encoding enhances lo-
calized contextual representation. Moreover, the attention weights
of visual and semantic encodings are inclined to emphasize the
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Table 5: Ablation study of encodings and mask in LCM on
LastDoc4000 dataset. “P”, “V” and “S” are short for “Position”,
“Vision” and “Semantic” encoding individually. “M” and “Δ”
are “Mask” and the mask ratio. “w/” and “w/o” stand for
“with” and “without” respectively.

Method P V S M Δ
Setup-D
F1(%)

QGN𝑤/𝑜 𝑏𝑖𝑎𝑠 ✗ ✗ ✗ ✗ - 74.54
QGN𝑤/ 𝑃 ✓ ✗ ✗ ✗ - 76.24
QGN𝑤/ 𝑃&𝑉 ✓ ✓ ✗ ✗ - 77.39
QGN𝑤/ 𝑃&𝑉&𝑆 ✓ ✓ ✓ ✗ - 79.77
QGNw/ P&V&S&M ✓ ✓ ✓ ✓ 0.3 81.24

(a) Distribution of position encoding heat map.

(b) Distribution of vision encoding heat map.

(c) Distribution of semantic encoding heat map.

Figure 8: Visualization of the heat-maps generated by Layout
Context-aware block. The colored blocks quantify howmuch
attention the 𝑖-th token pays to the 𝑗-th token in various
decodings.

words with similar features, which indicates that the model learns
more inductive bias from variable layout encodings. We argue that
these different encodings exhibit complementary attention scores
emphasis, which boosts the performance of the subsequent DIE
task. To validate the effect of hyper-parameters of QGN, we sep-
arate 10% of the training set for validation. For the mask ratio on
LCB, we start with 0, and in increment of 0.1, the performance
keeps improving until Δ = 0.3, which indicates the effectiveness of
the proposed mask mechanism to denoise the attention of irrele-
vance. Specifically, we observe that the F1-score decreases when
the mask ratio is over 0.5, the possible reason is that a higher mask
ratio on layout encodings tends to shrink the receptive field. We set
the hyper-parameter to 0.3 for all the tasks according to the above
observation.

4.4.2 Effect of query method. As shown in Tab. 6, we also inves-
tigate the effectiveness of the entity prefix query mechanism. To
perform the comparison, an additional sequence tagger is trained

Table 6: Ablation study of different query schemes on the
LastDoc4000 dataset. “WhK” and “WhV” mean the whole
𝐾𝑒𝑦 and 𝑉𝑎𝑙𝑢𝑒 entity extracted by sequence tagging, while
“PrK” and “PrV” stand for the prefix classification of 𝐾𝑒𝑦 and
𝑉𝑎𝑙𝑢𝑒, respectively. “W” represents the window mechanism.
“Λ” denotes the window size.

Method WhK WhV PrK PrV W Λ
Setup-D
F1(%)

QGN𝑤/𝑊ℎ𝐾 ✓ ✗ ✗ ✗ ✗ - 61.18
QGN𝑤/𝑊ℎ𝑉 ✗ ✓ ✗ ✗ ✗ - 69.35
QGN𝑤/ 𝑃𝑟𝐾 ✗ ✗ ✓ ✗ ✗ - 69.59
QGN𝑤/ 𝑃𝑟𝑉 ✗ ✗ ✗ ✓ ✗ - 78.66
QGNw/ PrV&W ✗ ✗ ✗ ✓ ✓ 4 81.24

Table 7: Ablation study of the copy-generative module on
the LastDoc4000 dataset.

Method Generative Copy Setup-D
F1(%)

QGN𝑤/ 𝐶𝑜𝑝𝑦 ✗ ✓ 65.26
QGN𝑤/ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑣𝑒 ✓ ✗ 79.77
QGNw/ Generative&Copy ✓ ✓ 81.24

to extract the entire entities. Compared with taking the whole en-
tity as input, our prefix-based method can significantly increase
F1-score by at least 8.41%, which shows its better robustness and
flexibility in the noisy scenes. Additionally, applying the prefix
of 𝑉𝑎𝑙𝑢𝑒 for structural generation is able to increase F1-score by
9.07% as clearly demonstrated by QGN𝑤/ 𝑃𝑟𝐾 and QGN𝑤/ 𝑃𝑟𝑉 . For
the hyper-parameter of window size Λ, we set Λ = 4 via a similar
validation process.

4.4.3 Effect of copy-generative module. We also perform experi-
ments to evaluate the copier and generator in the structural gener-
ative stage. The results are reported in Tab. 7, from which we can
see that the generative branch plays a dominant role, which may
be attributed to the Sequence-to-Sequence LM of the pre-training
phase. We observe some failure cases in Fig. 6 d), which is due to
the duplicated and error results in the generation stage, but it can
be alleviated by the copy branch to some extent. Specifically, the
copy mechanism brings 1.47% improvement.

5 CONCLUSION AND LIMITATION
This paper proposes QGN, a query-driven generative network for
DIE in the wild task, especially for unseen layouts and keys, as well
as OCR errors. Extensive experiments show that QGN outperforms
the state-of-the-art methods in public DIE datasets. Additionally,
we introduce a large-scale DIE dataset called LastDoc4000, a diverse
benchmark for DIE, and wish it could inspire researches on DIE
in the future. Generative paradigm will inevitably encounter the
problem of faithfulness and factuality, we will introduce more prior
knowledge as guidance to generate the structured results with
higher quality and further adapt our model to more expansive
application scenes in the future work.
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Figure 10: Document quantity of each type. “zh-” is short for
Chinese, “en-” for English, “cert” for certificates, “dip” for
diploma. It demonstrates that the diversity of LastDoc4000
in document types is superior to other datasets.

Figure 11: Statistics of word length in different datasets.

Table 8: Ablation study of various augmentation strategies
on LastDoc4000 dataset. “Sem”, “Spa” and “Vis” stand for
“Semantic”, “Spatial” and “visual” respectively.

Method Sem Spa Vis Setup-D
F1(%)

QGN𝑤/𝑜 𝑎𝑢𝑔 ✗ ✗ ✗ 79.40
QGN𝑤/ 𝑆𝑒𝑚 ✓ ✗ ✗ 79.88
QGN𝑤/ 𝑆𝑒𝑚&𝑆𝑝𝑎 ✓ ✓ ✗ 80.86
QGNw/ Sem&Spa&Vis ✓ ✓ ✓ 81.24

A LASTDOC4000 DATASET
As stated in the main text, public datasets of DIE have significantly
promoted the development of document understanding research.
However, most of them focus on limited entities in specific sce-
narios (e.g., receipts, forms, and examination papers), which lacks
the generalization of various scenarios in terms of layouts and
keys. In order to address this issue, we introduce a new large-scale

benchmark named LastDoc4000 containing 4,000 images of semi-
structured documents. Some examples of LastDoc4000 are shown
in Fig. 9.

Figure 9: Some examples in LastDoc4000. Key and value enti-
ties are highlighted in different colors.

A.1 Annotation details.
For each document, there are four annotation types for information
extraction: 1) Text contents with the bounding box, used as correct
inputs of ideal scenes. 2) Recognition results of OCR engine, used as
noisy input of the wild scenes. 3) Entity annotation with key-value
pairs, used to check the intermediate results of the referenced two-
stage extraction method. 4) Structured results of key-value pairs,
used as the end-to-end targets, need to be extracted.

A.2 Statistical analysis.
LastDoc4000 has a large number of documents with various layouts
in English and Chinese, aiming to promote DIE in the wild scenes. It
contains 4,000 images with 1,511 different layouts, including forms,
certificates, bills, and other structured information scenarios. The
data is divided into a training set with 2,687 images and a testing
set with 1,313 images, respectively. Moreover, to better study the
dataset’s diversity, we also collect statistics of the document type
and word count. As shown in Fig. 10 and Fig. 11, we can see that
LastDoc4000 exhibits more diversity in both document types and
content length.

A.3 Data desensitization.
For the information security issue, we strictly conduct data de-
sensitization processes as follows: 1) Remove the human face and
body information in the document. 2) Remove seal information
from documents, which mainly appear in enterprise licenses. 3) Re-
move handwritten notes from documents, which are mainly in the
bank receipt scenarios. 4) Replace sensitive field information with
synthetic data, including name, gender, company name, telephone
number, address, email, etc. 5) Manual review in total.

B EFFECT OF AUGMENTATION STRATEGY
We validate the effect of proposed data augmentations on QGN, as
reported in Tab. 8. With the help of augmentation, a substantial
performance boost of margin 1.84% is acquired on the LastDoc4000
dataset. This ablation study proves that each augmentation method
is beneficial, and their combination provides a better result.
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