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Multimodal Pre-training Based on Graph Attention
Network for Document Understanding

Zhenrong Zhang, Jiefeng Ma, Jun Du, Licheng Wang and Jianshu Zhang

Abstract—Document intelligence as a relatively new research
topic supports many business applications. Its main task is to au-
tomatically read, understand, and analyze documents. However,
due to the diversity of formats (invoices, reports, forms, etc.) and
layouts in documents, it is difficult to make machines understand
documents. In this paper, we present the GraphDoc, a multimodal
graph attention-based model for various document understand-
ing tasks. GraphDoc is pre-trained in a multimodal framework by
utilizing text, layout, and image information simultaneously. In a
document, a text block relies heavily on its surrounding contexts,
accordingly we inject the graph structure into the attention
mechanism to form a graph attention layer so that each input
node can only attend to its neighborhoods. The input nodes of
each graph attention layer are composed of textual, visual, and
positional features from semantically meaningful regions in a
document image. We do the multimodal feature fusion of each
node by the gate fusion layer. The contextualization between each
node is modeled by the graph attention layer. GraphDoc learns
a generic representation from only 320k unlabeled documents
via the Masked Sentence Modeling task. Extensive experimental
results on the publicly available datasets show that GraphDoc
achieves state-of-the-art performance, which demonstrates the
effectiveness of our proposed method. The code is available at
https://github.com/ZZR8066/GraphDoc.

Index Terms—Document understanding, Pre-training, Multi-
modal, Graph attention layer.

I. INTRODUCTION

AS an indispensable research area in NLP, document
understanding aims to automate the information extrac-

tion from documents and support numerous business applica-
tions. This technology can significantly reduce the laborious
document process workflows through automated document
classification, entity recognition, semantic extraction, etc.

Documents convey information through plain text, visual
content, and layout structure. As shown in Figure 1, documents
include a variety of types such as receipts, forms, invoices, and
reports. Different types of documents indicate that the text
fields of interest are located at different positions within the
document, which is often determined by the style and format
of each type as well as the document content. Therefore,
to precisely understand documents, it is inevitable to take
advantage of the cross-modality nature of documents, where
the textual, visual, and layout information should be jointly
modeled and learned in a multimodal framework [1], [2], [3].
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Self-supervised learning has emerged as a paradigm to learn
general data representations from unlabeled examples and to
fine-tune the model on labeled data [4], [5], [6]. This has
been verified successfully in a variety of NLP tasks [7], [8]
in recent years. Despite the widespread use of pre-training
models for NLP applications, they focus almost exclusively
on text-level manipulation, while neglecting image and layout
that is vital for document understanding. Recently, many pre-
training models [9], [10], [11], [12] modified the BERT [7]
architecture by combining textual features with images and
layouts. These approaches achieved state-of-the-art results in
several document understanding tasks [13], [14], [15], which
demonstrate the effectiveness of multimodal self-supervised
pre-training. Additionally, from a practical perspective, many
tasks related to document understanding are label-scarce.
Therefore, applying the self-supervised pre-training to learn
a generic representation from a collection of unlabeled docu-
ments in a multimodal framework is essential.

Most contemporary BERT-like pre-training models for doc-
ument understanding [9], [10], [16], [17] use individual words
as inputs. In a document, however, a single word can be
understood within the local contexts and does not always re-
quire analyzing the entire page. With all words in a document
considered, these models will not be sufficiently penalized
during the pre-training phase. Moreover, these pre-training
models will suffer from input length constraints, especially
for text-rich documents. In our work, we follow Self-Doc [11]
and deem semantic regions (text block, table, heading, etc.) in
document images as basic input elements instead of words.

Although self-attention [18] is a basic yet powerful compo-
nent in the Transformer architecture, it is inefficient to some
extent. As each input element has to attend to all n elements,
the overall complexity scales as O(n2). In a document, how-
ever, a semantic region relies more heavily on its surrounding
context, which is already a robust inductive bias. However,
previous works [10], [11], [12] apply the Transformer to learn
this bias from scratch during the pre-training phase, which
increases the learning cost. Therefore, how to leverage this
prior knowledge to “lighten up” the pre-training model will
be meaningful. In our work, we inject the graph structure in
a document into the attention mechanism to form the graph
attention layer instead of the original Transformer architecture
to mitigate this problem.

In this paper, we present the GraphDoc, a multimodal graph
attention-based model for document understanding as shown
in Figure 2. GraphDoc follows the now common, pre-training
and fine-tuning strategy. We treat semantic regions of docu-
ment images extracted by the Optical Character Recognition
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Fig. 1. The example images of documents with different formats and layouts. The layout and visual content of different documents are markedly inconsistent.

(OCR) as basic input elements instead of words. Distinct from
previous pre-training models [9], [17], [19], which only focus
on combining textual features with corresponding layouts,
we fully exploit text, image, and layout information during
the pre-training phase to learn the cross-modality interaction.
More specifically, for each semantic region, we extract tex-
tual features using the pre-trained Sentence-BERT [20] and
apply the RoIAlign [21] to extract the visual features from
the output of the visual backbone [22]. The final sentence
embeddings and visual embeddings are obtained by combining
textual features and visual features with spatial layout features,
respectively. Different from previous works [9], [10], [16],
we design the graph attention network with the gate fusion
layer to do multimodal interaction instead of the Transformer
architecture. We first do multimodal fusion through the de-
signed gate fusion layer to fuse the sentence embeddings and
visual embeddings. Moreover, we make visual information
accessible across graph attention layers which act as a residual
connection [23]. Then, each input node, which contains both
text and image information, does the attention mechanism only
on its neighborhoods through the graph attention layer. In
addition, the global node, which is attended to each input
node, will assist the model to understand documents in a
global aspect. As for the pre-training strategy, we simply use
the Masked Sentence Modeling (MSM) task. In this way,
GraphDoc learns a generic multimodal representation only
from 320k unlabeled documents images.

The main contributions of this paper are as follows:
• We present a multimodal graph attention-based model,

named GraphDoc, for document understanding. Graph-
Doc fully exploits the textual, visual, and positional
information of every semantically meaningful region in a
document.

• We inject the graph structure in documents into the
attention mechanism to help each input node fully un-
derstand documents from both local and global aspects.
The ablation studies also demonstrate the effectiveness of
the proposed graph attention layer.

• Extensive experiments show that GraphDoc outperforms

other methods by using only 320k document images for
pre-training and achieves new state-of-the-art results in
some downstream tasks of document understanding.

II. RELATED WORKS

A. Attention mechanism
The attention mechanisms as an integral part of models

enable neural networks to focus more on relevant elements of
the input than on irrelevant parts. In multi-modal tasks, atten-
tion mechanism is also widely adopted to capture the cross-
modality interaction. [24] introduces an expansion-squeeze-
excitation (ESE) attention mechanism to aggregate the most
discriminative features from RGB and skeleton modalities, for
video-based elderly activity recognition. Considering both the
spatial and temporal relations of human skeleton motions,
[25] proposes a novel skeleton-joint attention with RNNs
to achieve better performance in the task of human motion
prediction. [26] presented a neural machine translation archi-
tecture associating visual and textual features for translation
tasks with multiple modalities. [27] proposed dual attention
networks which jointly leverage visual and textual attention
mechanisms to capture fine-grained interaction between vision
and language for visual question answering and image-text
matching tasks. [28] presented a recurrent neural network with
an attention mechanism to fuse multimodal features, where
image features are incorporated into the joint features of text
and social context to produce a reliable fused classification for
effective rumor detection.

While self-attention is powerful, the computation and mem-
ory overhead of the Transformer are quadratic to a se-
quence length. To reduce the complexity in self-attention,
some sparse Transformers have been recently proposed. Star-
Transformer [29] replaces the fully-connected structure with a
star-shaped topology, in which every two non-adjacent nodes
are connected through a shared relay node. Longformer [30]
uses a number of efficient attention patterns on the encoder
network and reduces the model complexity. Graph attention
network [31] computes the hidden representations of each
node in the graph, by attending over its neighbors.
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Fig. 2. An illustration of the multimodal framework of GraphDoc. Given a document image with OCR results, we first extract the corresponding textual and
visual embedding for each text region using the textual encoder and the visual encoder, respectively. Then, we apply the well-designed graph attention layer
to encode the multimodal representations for each region. The model is pre-trained via the Masked Sentence Modeling (MSM) task.

B. Self-supervised learning

Recently, self-supervised learning has emerged as an ef-
fective technique for settings where labeled data is scarce.
The key idea is to learn general representations in a setup
where substantial amounts of unlabeled data are available and
to leverage the learned representations to improve performance
on a downstream task for which the amount of labeled data
is limited. This has been particularly successful for natural
language processing [7], [8], speech recognition [32], [33] and
computer vision [34], [35]. It is also an active research area
for multi-modal tasks such as video action recognition, audio
event classification, and text-to-video retrieval. [36] presented
a framework for learning multimodal representations from un-
labeled data using convolution-free transformer architectures.
[37] extended the concept of instance-level contrastive learning
with a multimodal clustering step in the training pipeline to
capture semantic similarities across modalities. [38] aimed at
learning directly from raw text about images which leverages
a much broader source of supervision. It demonstrated that the
simple pre-training task of predicting which caption goes with
which image is an efficient and scalable way to learn SOTA
image representations from scratch.

C. Docuemnt pre-training

Document pre-training methods in the literature can be di-
vided into three categories according to the utilization of text,
image, and spatial information in document images during the
pre-training phase.

The first is text-based pre-trained models. BERT [7], whose
architecture is a multi-layer bidirectional Transformer encoder
based on [18], uses masked language models to obtain pre-
trained deep bidirectional representations. The pre-trained
BERT model can be finetuned with fewer labeled data and
achieve state-of-the-art results for a wide range of NLP tasks.
[8] finds that BERT was significantly undertrained and pro-

poses an improved recipe for training BERT models, which is
called RoBERTa.

The second is to combine the textual features with the
spatial layout. LayoutLM [9] is the first to jointly model
interactions between text and layout information in a single
framework for document-level pre-training. It modifies the
BERT architecture by adding 2D spatial coordinate embed-
dings along with 1D positional and semantic embeddings.
BROS [17], which is also a BERT-based encoder, utilizes
relative positions between text blocks for spatial layout en-
coding. It also proposes a novel area-masking self-supervision
strategy that reflects the 2D natures of text blocks. Different
from BROS and LayoutLM, StructuralLM [19] uses cell-level
2D-position embeddings with tokens in a cell sharing the same
2D coordinate. It also proposes a new pre-training object called
cell position classification, in addition to the masked visual-
language model.

The third is to fully exploit the textual, visual, and positional
information of every semantically meaningful component in
a document. LayoutLMv2 [10] improves over the LayoutLM
by integrating the image information with text and layout, and
takes advantage of the Transformer architecture to learn the
cross-modality interaction between visual and textual infor-
mation during the pre-training stage. Due to spatial and visual
dependencies that might differ across transformer layers, Doc-
Former [16] unties visual, text, and spatial features. Distinct
from previous methods, Self-Doc [11] adopts semantically
meaningful components (e.g., text block, heading, figure) as
the model input instead of isolated words. It takes the pre-
extracted RoI features and sentence embeddings as input,
and models the perform learning over the textual and visual
information using the cross-modality encoder. UniDoc [12]
improves the Self-Doc by making use of three self-supervised
tasks, encouraging the representation to model sentences, learn
similarities, and align modalities.

Since the task requires understanding texts in various
layouts, the combination of multiple technical components
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Fig. 3. The illustration of the textual encoder. It applies the Sentence
BERT and Layout Embedding Layers to encode both semantic and spatial
information, which are then added to form the final sentence embeddings S.

from both computer vision and natural language processing is
required. In our work, we combine textual features with their
image and layout for each semantic region. The GraphDoc is
simply pre-trained on the Masked Sentence Modeling (MSM)
task and achieves new state-of-the-art on downstream tasks of
document understanding.

III. METHOD

An overview of the multimodal framework of GraphDoc
is presented in Figure 2. Given a document image I with n
semantic regions, we apply the off-the-shelf OCR engine [39]
to obtain the i-th semantic region with the bounding box
bi and its corresponding text sentence ti. For each semantic
region, it contains text and image along with its positional
information. We design the textual encoder to encode both
text and spatial layout information simultaneously to generate
sentence embeddings. Similar to the textual encoder, the visual
encoder encodes both image and positional information to
generate visual embeddings. Then, we stack N blocks which
are composed of gate fusion layers and graph attention layers
to generate multimodal contextualized representations for all
semantic regions. The feature fusion from each modality is
performed by the gate fusion layer, while the graph attention
layer captures the contextualization information between each
region. Considering the phenomenon that a text block relies
more heavily on its surrounding contexts, the designed graph
attention layer allows each region to attend to only its neighbor
area N (i). In the pre-training stage, the model is pre-trained
via the MSM task on a large collection of document images
and the generated representation can be further utilized for
downstream document understanding tasks.

A. Textual encoder

Since the text content in a document is presented in the
2D structure, it is necessary to encode text with layout infor-
mation. Following the LayoutLMv2 [10], we normalize and
discretize all coordinates to integers in the range of [0, 512],
and use two embedding layers to embed x-axis features and y-
axis features separately. Given the normalized bounding box
of the i-th semantic region bi, we calculate the width and
height of the box denoted as wi and hi. The coordinate of
four vertices is represented as (xiv, yiv), v = {0, 1, 2, 3} in a
clockwise manner, starting from the upper left corner. The final
2D layout embedding li is then constructed by concatenating

Fig. 4. The illustration of the visual encoder. It applies Swin Transformer
with FPN to extract appropriate visual features for the document image. The
final visual embeddings are obtained by adding the visual features gained
from P2 with corresponding layout embeddings in each region.

six bounding box features (xi0, yi0, xi2, yi2, wi, hi) through
two layout embedding layers.

li = [Embx (xi0, xi2, wi) ;Emby (yi0, yi2, hi)] , 0 ≤ i ≤ n
(1)

[; ] is the concatenation operation. Embx and Emby are two
layout embedding layers. It is worth noting that the corre-
sponding bounding box features for l0 are (0, 0,W,H,W,H),
in which W and H represent the width and height of the input
document image, respectively

As shown in Figure 3, we embed plain text contained in
a semantic region into a feature vector using the pre-trained
Sentence-BERT model [20], which can derive semantically
meaningful sentence embeddings. Parameters of the Sentence-
BERT do not update during the pre-training phase. Sentence
embeddings S are calculated as follow:

si = Proj (SentenceEmb (ti)) + li, 0 ≤ i ≤ n (2)

where SentenceEmb and Proj represent the Sentence-BERT
and a linear projection layer, respectively. It is worth noting
that s0 is the [CLS] embedding.

B. Visual encoder

We use the Swin Transformer [22] with FPN [40] as the
backbone of our visual encoder. The backbone is first pre-
trained on the PubLayNet [41] dataset to make the extracted
visual features more semantics. A document image I is resized
to 512 × 512 then fed into the visual backbone to generate
a feature pyramid with four feature maps {P2,P3,P4,P5}
as shown in Figure 4. The output P2 is the feature map
from FPN with 1/4 size of the input image. After that, the
image feature of each semantic region is extracted from P2

by RoIAlign [21] according to bi. The visual embedding vi is
computed as follow:

vi = Proj (Pool (Backbone (I) , bi)) + li, 0 ≤ i ≤ n (3)

where Proj is a linear projection layer applied to each region-
level image feature in order to unify the dimensions. Pool
represents the RoIAlign operation. It is worth noting that v0

is the average of P2, which is used to represent the information
of the whole image.
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Fig. 5. An illustration of the graph attention layer. The {n1 − n7} represent different input nodes of the layer. G is the global node, which assists each node
to capture the global information of the document. Graph attention mechanism employed on {n1, n4, n7} is visualized. {n1, n4, n7} only attend to their
neighborhood nodes and a global node G.

C. Gate fusion layer

Most previous pre-training models [10], [42] produce an
embedding sequence by collecting multimodal information
from text, vision, and layout, and then perform a transformer
network to establish deep fusion on different modalities. In
our work, we adopt semantically meaningful components (e.g.,
text block, table, figure) as the model input. Since each
component has its corresponding multimodal information, we
design the gate fusion layer to explicitly fuse information from
each modality.

Moreover, we believe that the dependencies between text
and image might differ across graph attention layers, which is
verified in our ablation experiments. Inspired by ResNet [23],
we make visual information accessible across graph attention
layers act as an information residual connection. The gate
fusion layer is designed as follow:

zli = σ
(
W2g

(
W1

[
vi;h

l−1
i

]
+ b1

)
+ b2

)
(4)

ml
i =

(
1− zli

)
hl−1
i + zlivi (5)

where ml
i ∈ Rd, hl

i ∈ Rd, W1 ∈ Rd×2d, b1 ∈ Rd,
W2 ∈ R1×d, b2 ∈ R1. d is the dimension of the visual
embedding. The σ and g are sigmoid and GELU [43] function.
As shown in the upper of Figure 5, ml

i represents the i-th
output element in the l-th gate fusion layer. hl

i represents the
i-th output hidden representation in the l-th graph attention
layer. It is worth noting that h0

i = si.

D. Graph attention layer

The observation that a text block in a document relies more
heavily on its surrounding context is a robust inductive bias.
However, previous pre-trained models [9], [10], [11], [12]
apply the Transformer to learn this bias from scratch during

the pre-training stage. Inspired by GAN [31] and StartTrans-
former [29], we design the graph attention layer to compute the
hidden representation of each node in the graph, by attending
over its neighbors following a self-attention strategy. As shown
in Figure 5, each node attends to only its neighborhood nodes
and a global node, which can assist the model to understand
the document from both local and global aspects.

The input to l-th graph attention layer is features of n nodes,
Ml =

{
ml

1,m
l
2, ...,m

l
n

}
. The layer produces a new set of

node features Hl =
{
hl
1,h

l
2, ...,h

l
n

}
, as its output. Following

the original self-attention mechanism [18], we calculate the
attention score between the j-th node and i-th node as follows:

eij =
(
Wqml

i

)⊤ (
Wkml

j

)
(6)

where Wq ∈ Rd×d, Wk ∈ Rd×d. In addition, inspired
by TransformerXL [44] and BROS [17], we explore a
relative position encoding in 2D structure to improve the
attention mechanism. The relative position encoding be-
tween i-th node and j-th node is calculated as pij =[
f sinu (xiv − xjv) ; f

sinu (yiv − yjv)
]
. Here f sinu indicates a si-

nusoidal function [18]. Through the calculations, we obtain
four relative position encodings including ptl

ij , ptr
ij , pbr

ij , and
pbl
ij . The final representation of the relative position bias can

be acquired as follow:

bbij = Wtlptl
ij +Wtrptr

ij +Wbrpbr
ij +Wblpbl

ij (7)

e
′

ij = eij +
(
Wqml

i

)⊤
bbij (8)

where Wtl, Wtr, Wbr and Wbl are learnable matrices. e
′

ij is
the final attention coefficient.

In previous works, every node (including both word-level
and region-level) can attend to each other, neglecting the
document structure information. We inject the graph structure
into the attention mechanism by performing masked attention
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— we only compute e
′

ij for nodes j ∈ N (i), where N (i) is
the neighbor area of node i in the document. In our implemen-
tation, we select the top-k nodes nearest to node i (including
itself) according to the Euclidean distance. Moreover, it is
worth noting that we also append a global node ml

0 to N (i) to
assist the model in understanding a document from the global
aspect. Finally, the output vectors hl

i are obtained as follow:

ĥl
i =

∑
j

exp
(
e
′

ij

)
ml

j∑
k exp

(
e
′
ik

)Wv j, k ∈ N (i) (9)

hl
i = LN

(
ĥl
i + FFN

(
ĥl
i

))
(10)

in which Wv ∈ Rd×d, LN is layer normalization, FFN is
feed-forward network [18].

E. Pre-training task

Following Self-Doc [11], we use the Masked Sentence
Modeling (MSM) as the pre-training task for the GraphDoc
to learn the language representation with the clues of visual
embeddings and sentence embeddings. During the pre-training
stage, each sentence is randomly and independently masked,
while its corresponding layout information is preserved. For
the masked sentence, its text content is replaced with a special
symbol named [MASK]. The training target is to predict the
sentence embeddings of masked ones based on the sentence
embeddings and the visual embeddings of others. In this way,
the GraphDoc can understand the semantic contexts by fully
utilizing the multimodal information. We apply the smooth
L1 [45] to minimize the pre-training loss as follow:

LMSM (Θ) =
∑
i

smoothL1

(
si − fGraphDoc

(
si|S,V

))
(11)

where Θ is the trainable parameter set of GraphDoc and
fGraphDoc (·) outputs the predicted sentence embedding of
masked ones, S is the sentence embedding of unmasked ones.

IV. EXPERIMENTS

A. Datasets

We will introduce several datasets that are used for pre-
training and evaluating our GraphDoc in this section. The
extensive experiments are conduct on four benchmark datasets:
RVL-CDIP [15], FUNSD [13],SROIE [46], and CORD [14].

PubLayNet The PubLayNet dataset [41] contains over 360k
scholarly articles with bounding boxes on 5 categories, such as
text block, heading, figure, list, and table. An object detection
task is defined on PubLayNet. We use this dataset to pre-train
the visual backbone.

RVL-CDIP The RVL-CDIP dataset [15] consists of 400k
scanned document images, including 320k training images,
40k validation images, and 40k test images. The images are
categorized into 16 classes, with 25k images per class. A
multi-class single-label classification task is defined on RVL-
CDIP.

FUNSD The FUNSD [13] is a dataset for form understand-
ing in noisy scanned documents. It consists of 199 real, fully

annotated, scanned form images. The dataset is split into 149
training samples and 50 testing samples. It is suitable for
various tasks, but we focus on the entity labeling task in this
paper.

SROIE The SROIE dataset is composed of 626 receipts
for training and 347 receipts for testing. Every receipt contains
four predefined target fields: company, date, address, and total.
The segment-level text bounding box and the corresponding
transcript are provided. The task is to label each word to the
right field.

CORD The CORD dataset contains 800/100/100 receipts
for training/validation/testing. The receipts are labeled with 30
types of entities under 4 categories: company, date, address,
and total. A list of text lines with bounding boxes is provided.
The task is the same as SROIE.

B. Implementation details

We initialize the Sentence-BERT with BERT-NLI-STSb-
base 1 pre-trained for NLI [47] and STS-B [48]. A docu-
ment object detector [49] using the backbone of Swin Trans-
former [22] with FPN is trained on the PubLayNet dataset,
which will be used as the visual information extractor of
the GraphDoc. We build our pre-training corpus based on
the training set of RVL-CDIP [15] with 320k images. The
EasyOCR [39] engine is used to extract the bounding boxes
and text contents. There are two types of bounding boxes,
word-level and region-level, in EasyOCR. Some results of
these two types of bounding boxes are visualized in Figure 6.
In our experiments, we use the region-level bounding boxes
in default.

During pre-training, we freeze the parameters of Sentence-
BERT and jointly train the visual backbone and GraphDoc
in an end-to-end fashion. GraphDoc contains 12 layers of
graph attention blocks, with the hidden size set to 768 and
the number of heads to 12. Moreover, the parameter top-k
for our graph attention layer is set to 36. As for the MSM
task, following the setting in BERT [7], 15% of all input
sentences are masked among which 80% are replaced by the
[MASK] symbol, 10% are replaced by random sentences from
other documents, and 10% remain the same. We pre-train the
GraphDoc using Adam optimizer [50], [51], with the learning
rate of 5×10−5. The learning rate is linearly warmed up over
the first 10% steps then linearly decayed. The pre-training is
conducted on 4 Telsa A100 48GB GPUs with a batch size of
120, and it takes around 10 hours to complete the pre-training
for 10 epochs.

C. Ablation study

To verify the effectiveness of each component, we conduct
ablation experiments through several designed systems as
shown in Table I. The model is not modified except for
the component being tested. The model’s performance is
evaluated on the FUNSD dataset, and the training details will
be elaborated in the next subsection.

1https://github.com/UKPLab/sentence-transformers

https://github.com/UKPLab/sentence-transformers
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Fig. 6. Some examples of word-level and region-level detection results by EasyOCR in the RVL-CDIP dataset. First Row: The detection results in word-level.
Second Row: The detection results in region-level.

TABLE I
COMPARISON OF F1 AMONG SYSTEMS FROM T1 TO T6 ON THE FUNSD
DATASET. ATTRIBUTES FOR COMPARISON INCLUDE: 1) EMPLOYING THE
TEXTUAL ENCODER; 2) EMPLOYING THE VISUAL ENCODER; 3) JOINTLY

OPTIMIZING (JO) THE VISUAL ENCODER 4) USING THE GRAPH ATTENTION
LAYER (GAT); 5) USING THE RELATIVE POSITION ENCODING (RPE); 6)

PRE-TRAINING THE MODEL.

System
Encoder

JO GAT RPE Pre-train F1
Text Vision

T1 ✓ - - ✓ ✓ ✓ 86.36
T2 ✓ ✓ - ✓ ✓ ✓ 86.13
T3 ✓ ✓ ✓ - - ✓ 85.33
T4 ✓ ✓ ✓ ✓ - ✓ 86.56
T5 ✓ ✓ ✓ ✓ ✓ - 80.66
T6 ✓ ✓ ✓ ✓ ✓ ✓ 87.77

The effectiveness of multimodality To evaluate the effect
of multimodality, we design the systems T1 and T6 as shown
in Table I. Each system is designed with or without the visual
encoder. When both text and image modalities are encoded by
our encoder, the model (T6) exhibits better performance. This
illustrates that the multimodal pre-training in GraphDoc learns
better interactions from different modalities, thereby leading
to better performance.

The effectiveness of joint optimization Different from the
previous work [11], we jointly optimize the visual encoder
with the GraphDoc. To evaluate the effect of joint optimiza-
tion, we design the systems T2 and T6 as shown in Table I.
When the parameters of visual encoder are not updated with

TABLE II
PERFORMANCE BY USING DIFFERENT FEATURE FUSION STRATEGIES IN

THE SYSTEM T6 ON THE FUNSD DATASET.

Method Addition Concatenation Gate Fusion

F1 86.23 83.79 87.77

the GraphDoc, the performance drops from 87.77 (T6) to
86.13 (T2).

The effectiveness of gate fusion layer To evaluate the
effectiveness of the gate fusion layer, we conduct experiments
to compare it with two common feature fusion strategies [52],
[53], [54], including addition and concatenation as shown in
Table II . The gate fusion outperforms other strategies by a
large margin.

The effectiveness of graph attention network To investi-
gate the effect of the proposed graph attention layer (GAT), we
designed the systems T3 and T4 as shown in Table I. Different
from the T4, T3 uses the original Transformer architecture [18]
instead of the GAT. When applying the GAT, the model
(T4) achieves better performance, which demonstrates the
effectiveness of the proposed GAT. This is mainly because a
text block in a document relies more heavily on its surrounding
contexts, and the designed GAT obligates each node to attend
to only its neighborhoods. Moreover, through appending a
global node and stacking N GAT layers, the model can capture
the global information of the document as well.

The effectiveness of relative position encoding To in-
vestigate the effect of relative position encoding (RPE), we
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TABLE III
PERFORMANCE BY VARYING NUMBER OF RESIDUAL CONNECTION IN THE

SYSTEM T6 ON THE FUNSD DATASET.

Num 1 3 6 9 12

F1 86.44 86.83 87.14 87.32 87.77

TABLE IV
PERFORMANCE BY VARYING THE TOP-K IN THE SYSTEM T6 ON THE

FUNSD DATASET.

Top-K 16 24 36 48 60 256

F1 85.68 86.58 87.77 87.26 87.12 86.87

designed the systems T4 and T6 as shown in Table I. When
the RPE is used, the model (T6) achieves better performance.
This is mainly because the RPE encodes the relative positions
between bounding boxes into attention scores, which will fur-
ther boost the model’s awareness of the relationship between
nodes.

The effectiveness of pre-training Since the Sentence-
BERT and the visual backbone in GraphDoc have been pre-
trained from a large corpus, it’s doubtful whether GraphDoc
needs extra pre-training. As shown in Table I, we design T5
and T6 to answer this question. T6 outperforms T5 by a
large margin, which demonstrates the necessity of pre-training
in GraphDoc. It is worth noting that two layout embedding
layers, gate fusion layers across GAT layers in GraphDoc are
initialized randomly. The model needs pre-training to learn a
generic representation on layout embedding layers and make
gate fusion layers with GAT more capable of multimodal
interaction.

The effectiveness of residual connection We believe that
visual dependencies might be different across N GAT layers.
To verify this assumption, we design 5 systems with resid-
ual connections across different numbers of GAT layers as
shown in Table III. As the number of residual connection
layers increases, the performance of the model (T6) becomes
better, which demonstrates the effectiveness of the residual
connection.

The impact of Top-K To investigate the effect of the
configuration top-k in graph attention layer, as shown in
Table IV, we set a different number of top-k in the T6
system and evaluate on the FUNSD dataset. When top-k is
too small, the performance of the model degrades due to the
limited receptive field of each node. When the top-k increases,
especially when the top-k=256, it is essentially the system T3
with RPE, which further illustrates the effectiveness of the
proposed GAT.

D. Comparison with state-of-the-art methods

We compare our method with other state-of-the-art meth-
ods on three document understanding tasks, such as Form
Understanding, Receipt Understanding and Document Clas-
sification. The results are shown in Table V. In order to
form a fair comparison, we also present the results of Graph-
Doc using ResNet-50 as the visual backbone, as shown in
“GraphDocResNet” in Table V.

Fig. 7. Performance by varying size of pre-train data on the FUNSD dataset.

Form Understanding Form understanding requires the
model to predict the label for each semantic entity. We use
FUNSD [13] as the evaluation dataset. The officially-provided
OCR texts and bounding boxes are used during training and
testing. We take the semantic entities as input and feed the final
output representations of GraphDoc to a classifier. We apply
cross-entropy loss for finetuning. The model is finetuned for
50 epochs with a learning rate of 5×10−5 and the batch size of
2. All the parameters except Sentence-BERT are trained. We
use entity-level F1 score as the evaluation metric. Table V
lists the entity-level F1 score on the FUNSD. It is worth
noting that the Text+Layout+Image models outperform both
Text and Text+Layout models generally, which demonstrates
the indispensability of multimodal modeling in document
understanding. Moreover, under the same modality setting
(Text+Layout+Image), GraphDoc also outperforms existing
multimodal approaches and achieves the new state-of-the-art
result, which demonstrates the effectiveness of the proposed
model. The systems (LayoutLM, LayoutLMv2, BROS, etc.)
designed in token-level are pre-trained on a large corpus
(11M), which increases a lot of pre-training time. For example,
LayoutLMv2 takes about 500 hours to complete pre-training
on 4 Telsa A100 48GB GPUs, while GraphDoc only needs
10 hours. When the size of pre-train data is not sufficient, the
performance of token-level systems decreases significantly as
shown in Figure 7.

Receipt Understanding Receipt understanding requires the
model to recognize a list of text lines with bounding boxes.
The performance of this task is evaluated on SROIE [46] and
CORD [14] datasets. Like FUNSD, we use officially-provided
OCR annotations and bounding boxes for fine-tuning and feed
the output representations of GraphDoc to the classifier. The
model is finetuned for 50 epochs with a batch size of 4 and a
learning rate of 5× 10−5. The evaluation metric is the entity-
level F1 score. Table V shows the model accuracy on both
SROIE and CORD datasets. Our model achieves the new state-
of-the-art results on the SROIE dataset in the existing works
of literature. We also achieve second place in the public leader
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TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS. BOLD INDICATES THE SOTA AND UNDERLINE INDICATES THE SECOND BEST.

Model Modality #Data Scale
FUNSD SROIE CORD RVL-CDIP

#Params
F1 F1 F1 Accuracy

BERT [7]
Text

- Token 60.26 90.99 89.68 89.81 110M

RoBERTa [8] - Token 66.48 - - 90.06 125M

LayoutLM [9]

Text+Layout

11M Token 78.66 94.38 94.72 94.42 113M

BROS [17] 11M Token 81.21 95.48 95.36 95.58 139M

StructureLM [19] 11M Token 85.14 - - 96.08 355M

LiLT [55] 11M Token 88.41 - 96.07 95.68 -

FormNet [56] 700K Token 84.69 - 97.10 - 217M

LayoutLMv2 [10]

Text+Layout+Image

11M Token 82.76 96.25 94.95 95.25 200M

DocFormer [16] 5M Token 83.34 - 96.33 96.17 183M

Self-Doc [11] 320K Region 83.36 - - 92.81 -

UniDoc [12] 300K Region 87.38 - 96.64 93.92 274M

GraphDocResNet Text+Layout+Image
320K Region 87.95 98.41 96.56 96.10 262M

GraphDoc 320K Region 87.77 98.45 96.93 96.02 265M

board in Task-3 on SROIE just by a single mdoel 2.
Document Classification Document classification involves

predicting the category for each document image. We use
RVL-CDIP [15] as the target dataset. The OCR words and
bounding boxes are extracted by EacyOCR [39]. We feed
the global node of output representations of GraphDoc to
the classifier. We fine-tune the model for 30 epochs with a
batch size of 64 and a learning rate of 1 × 10−5. Classifi-
cation accuracy over 16 categories is used to measure model
performance. Table V shows the model accuracy on RVL-
CDIP datasets and GraphDoc achieves a state-of-the-art result.
The reason why the performance of Self-Doc is worse than
other Text+Layout models is mainly Self-Doc uses the fixed
visual encoder without learning a suitable representation in
vision modality for downstream tasks. While in GraphDoc,
we jointly train our visual backbone. It is worth noting that
UniDoc [12] does not have the [CLS] token for classification,
and it simply uses the overall representation by averaging all
output region features and learns a classifier on top of the
overall representation with cross-entropy loss. In this way, it
implicitly agrees that each region is equally important for the
document classification, which is the main reason for its poor
performance compared to other Text+Layout+Image systems
on the RVL-CDIP dataset.

E. Case study

1) GAT Vs. Transformer: The GAT is designed to force
each text node in the document into attending more accurately
on neighborhood area. As shown in Figure 8, we give some
attention visualization results of Transformer and GAT on the
same text node of certain documents on the FUNSD dataset.
Each visualization result is obtained using the averaged at-
tention weights from the last attention layer of each model.
From the attention results listed in Figure 8, we can find

2https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3

that the Transformer model tends to rely more on the global
information and attends homogeneously to each text node in
the document, while the GAT model tends to focus on those
text nodes which are most relevant of the chosen text node.
Specifically, as shown in Figure 8(a), the GAT model attends
mostly to the surrounding area, including the contents of the
table and the corresponding values of the chosen text node
“Purpose” and classifies it rightly into class “Question”, while
the Transformer model predicts it as class “Header” since it
attends to too many useless text nodes. Similar situations can
be observed in Figure 8(b).

2) Region Vs. Word: One important motivation behind
GraphDoc is to explore the advantage of region-level modeling
versus word-level modeling across scanned document images.
As mentioned above, our method has achieved new state-of-
the-art performance on several downstream tasks, surpassing
word-level modeling methods such as LayouLM by a large
margin. We visualize several document samples from three
different downstream tasks in Figure 9 to verify this. As
the top-left images 1A and 1B depict, GraphDoc classifies
semantic entities in region-level and correctly predicts “803E
// Pages (including cover)” to Answer category by utilizing the
prior knowledge that these words are in the same semantic
region. However, without paying special attention to region-
level information, LayoutLM-V2 missed “// Pages (including
cover)”. Similar situations can be observed in other visualized
cases in Figure 9. Moreover, when both the region-level and
word-level boxes are the same as shown in samples 4-5 in
Figure 9, GraphDoc still performs better than LayoutLMv2.

3) Representative Failure Cases: We have listed some
representative failure cases in the FUNSD dataset as shown
in Figure 10. The first kind of failure cases is caused by
the structure nesting problem. As Figure 10(a) and 10(b)
depict, the words ‘REGION’ and ‘DIVISION’ are subtitles
of ‘GEOGRAPHY’, which should play the same semantic
role in the document. However, they are labelled differently as

https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3
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Fig. 8. Attention visualization results on the FUNSD dataset. The A/B series refers to the visualization of GAT/Transformer, respectively. The gradation of
color of each text node indicates varied attention weight from the chosen text node (emphasized with a red bounding box). The global node is attached to the
left side of each document image. Maps from the ground-truth label to the system predicted label are annotated near the target area. The green text indicates
correct predictions, while red indicates incorrect predictions.

‘Question’ and ‘Header’ entity. This kind of labelling fuzziness
results in some failure cases in GraphDoc such as predicting
‘Question’ entity as ‘Header’ entity in Figure 10(a). The
second kind appears in table-like document as shown in Figure
10(c). It’s not easy to distinguish whether the first row or the
first column of one table serves as the key area. GraphDoc
also makes a mistake for predicting the second cell of the
first column, which is the ‘Answer’ to its upper cell, as the
‘Question’ entity. The last kind is caused by some mistakes
in ground-truth labelling. In Figure 10(d), we can see that the
name ‘Scottt R. Benson’ is wrongly labelled as an ‘Other’
entity but our GraphDoc model predicts it as the right label
‘Answer’.

V. CONCLUSION

In this work, we present the GraphDoc, a multimodal graph
attention-based model for various Document Understanding
tasks. GraphDoc fully utilizes the text, image, and layout
information in a document. Considering a text block relies
more heavily on its surrounding context, we present a novel
graph attention network instead of the Transformer architec-
ture. Each input node can attend to only its neighborhood
nodes and a global node, which makes the model learn
contextualized information in the document from both local
and global aspects. Moreover, we also propose a gate fusion
layer for each input node to fuse the textual and visual features.
GraphDoc learns a generic representation from only 320k
unlabeled documents via the Masked Sentence Modeling task.
Extensive experiment results on some document understanding
tasks, such as form understanding, receipt understanding,
and document classification, show that GraphDoc achieves
state-of-the-art, which demonstrates the effectiveness of our
proposed method.
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